메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제14권 제4호
발행연도
2013.4
수록면
1,942 - 1,950 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 네트워크 트래픽 데이터를 시각화하고, 시각화된 데이터에 다중 클래스 SVM을 적용함으로써 트래픽의 공격을 자동으로 탐지하는 새로운 방법을 제안한다. 본 논문에서 제안된 방법은 먼저 송신자와 수신자의 IP 와 포트 정보를 2차원의 영상으로 시각화한 후, 시각화된 영상으로부터 트래픽의 공격을 의미하는 라인과 명암값이 높은 패턴을 추출한다. 그리고 송신자와 수신자 포트의 분산도 값을 구하고, ISODATA 군집화 알고리즘을 이용하여 군집의 개수와 엔트로피 특징 값을 추출한다. 그런 다음, 위에서 추출한 여러 특징 값들을 다중클래스 SVM(Support Vector Machine)에 적용하여 네트워크 트래픽의 공격이 정상 트래픽, DDoS, DoS, 인터넷 웜, 그리고 포트 스캔인지 의 여부를 효과적으로 탐지 및 분류한다. 본 논문의 실험에서는 제안된 다중 클래스 SVM을 활용한 방법이 네트워크 트래픽의 공격을 보다 효과적으로 탐지하고 분류한다는 것을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001107625