메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제15권 제3호
발행연도
2014.3
수록면
1,724 - 1,733 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 비모노톤함수(non-monotone function)인 CosExp(cosine-modulated symmetric Exponential function) 함수와 모노톤함수(monotone function)인 시그모이드 함수를 캐스케이드 코릴레이션 알고리즘(Cascade Correlation algorithm)의 학습에 병행해서 사용하여 이중나선문제(two spirals problem)의 패턴인식에 어떠한 영향이 있 는지 분석하고 이어서 알고리즘의 최적화를 시도한다. 첫 번째 실험에서는 알고리즘의 후보뉴런에 CosExp 함수를 그 리고 출력뉴런에는 시그모이드 함수를 사용하여 나온 인식된 패턴을 분석한다. 두 번째 실험에서는 반대로 CosExp 함수를 출력뉴런에서 사용하고 시그모이드 함수를 후보뉴런에 사용하여 실험하고 결과를 분석한다. 세 번째 실험에서 는 후보뉴런을 위한 8개의 풀을 구성하여 변형된 다양한 시그모이드 활성화 함수(sigmoidal activation function)를 사 용하고 출력뉴런에는 CosExp함수를 사용하여 얻게 된 입력공간의 인식된 패턴을 분석한다. 네 번째 실험에서는 시그 모이드 함수의 변위를 결정하는 세 개의 파라미터 값을 유전자 알고리즘을 이용하여 얻는다. 이 파라미터 값들이 적 용된 시그모이드 함수들은 후보뉴런의 활성화를 위해서 사용되고 출력뉴런에는 CosExp 함수를 사용하여 실험한 최적 화 된 결과를 분석한다. 이러한 알고리즘의 성능평가를 위하여 각 학습단계 마다 입력패턴공간에서 인식된 이중나선 의 형태를 그래픽으로 보여준다. 최적화 과정에서 은닉뉴런(hidden neuron)의 숫자가 28에서 15로 그리고 최종적으로 12개로 줄어서 학습 알고리즘이 최적화되었음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (5)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001119167