메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제16권 제12호
발행연도
2015.12
수록면
8,753 - 8,759 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
터빈 발전 사이클에서의 안정적인 발전 출력 유지관리를 위해서는 검증된 성능 측정 데이터 그룹과 이를 바탕으로 한 발전 출력 성능 계산 절차의 수립이 필요하다. ASME PTC(Performance Test Code)의 성능 계산 절차를 기반으로 본 연구 에서는 터빈 출력에 의한 발전기 출력 성능 산정을 위해서 터빈 팽창선 모델과 발전기 출력 측정 데이터의 입력 검증 모델을 구성하였다. 또한 불확실한 측정 데이터에 대한 검증 모델도 구성하였다. 지난 연구에서는 신경회로망과 커널 회귀의 학습 방법을 사용하였으나 본 연구에서는 미측정 데이터에 대한 보완을 하기 위하여 서포트 벡터 머신 모델을 사용하여 발전기 출력 계산 데이터의 학습 모델을 구성하였으며, 학습 모델 구성을 위해서 관련 변수의 선정을 위한 절차와 학습 데이터 구간 을 설정하는 알고리듬을 개발하였다. 학습의 결과 오차는 약 1% 범위 안에 있게 되어 추정 및 학습 모델로서 유용함을 입증 하였다. 이 학습 모델을 사용하여 측정 데이터 중 상실된 부분에 대한 추정 모델을 구성함으로써, 터빈 사이클 보정 성능 계산의 신뢰성을 향상시킬 수 있음을 검증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001103925