메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이호경 (와이즈넛) 안재현 (동아대학교) 윤정민 (동아대학교) 배경만 (한국전자정보통신연구소) 고영중 (동아대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.8
발행연도
2017.8
수록면
813 - 821 (9page)
DOI
10.5626/JOK.2017.44.8.813

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
개체 링킹은 입력된 질의에 존재하는 개체를 표현한 개체 표현(entity mention)을 지식베이스에 존재하는 개체와 연결하여 의미를 파악하는 연구이다. 개체 링킹에 관한 연구는 지식 베이스 구축 문제, 다중 표현 문제, 개체 연결 중의성 문제, NIL 개체 인식 문제가 존재한다. 본 연구에서는 지식 베이스 구축 문제와 다중 표현 문제를 해결하기 위해 위키피디아를 기반으로 개체 이름 사전을 구축한다, 또한, 문맥 유사도, 의미적 관련성, 단서 단어 점수, 개체 표현의 개체명 타입 유사도, 개체 이름 매칭 점수, 개체인기도 점수 자질들을 기반으로 SVM(support vector machine)을 학습하여, NIL 개체를 인식하는 문제와 개체 연결 중의성을 해소하는 방법을 제안한다. 구축한 지식 베이스를 기반으로 제안한 두 방법을 순차적으로 적용하였을 때 좋은 개체 링킹 성능을 얻었다. 개체 링킹 시스템의 성능은 NIL 개체 인식 성능이 83.66%, 중의성 해소 성능이 90.81%의 F1 점수를 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 실험
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0