메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Young-Seon Jeong (Chonnam National University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.16 No.3
발행연도
2017.9
수록면
420 - 426 (7page)
DOI
10.7232/iems.2017.16.3.420

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Semiconductor wafer maps provide vital information and clues to monitor and better understand the quality issues in the underlying manufacturing process. In post-fabrication, each chip undergoes a series of quality checks to determine whether the chip is in functional or defective state. Since each defect pattern is unique, automatically characterizing the various defect patterns in wafer map can provide significant insights to process engineers towards mitigating manufacturing defects and improve the effective yield rate. In this paper, we present a novel data mining and optimization-based supervised learning algorithm, called support vector machines with weighted dynamic time warping kernel (SVM-WDTWK), to classify defect patterns on semiconductor wafers. SVM-WDTWK provides a flexible and robust matching algorithm for time series classification, leading to an accurate match between non-aligned time series data. We present a numerical comparison to show that the proposed SVM-WDTWK algorithm is superior to several existing techniques on defect pattern classification on semiconductor wafer maps.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED METHODOLOGY
3. SVM WITH WEIGHTED DYNAMIC TIME WARPING KERNEL FUNCTION
4. EXPERIMENTAL RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-001255278