메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제24권 제5호
발행연도
2013.10
수록면
989 - 998 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 산/학계에서 주목받고 있는 빅 데이터는 정의상 한꺼번에 자료를 메모리에 올려 분석할 수 없기 때문에 기존의 데이터마이닝 시대에 개발된 일괄처리 (batch processing) 방식의 알고리즘을 적용할 수 없게 된다. 따라서 가장 시급히 해결해야 하는 문제는 기존의 여러 가지 기계학습방법을 빅 데이터에 적용할 수 있도록 분산처리 (distributed processing)를 수행하는 적절한 알고리즘을 개발하는 것이라 볼 수 있다. 본 논문에서는 분류문제에서 각광받는 지지벡터기계 (support vector machines)의 여러 알고리즘을 살펴보고자 한다. 특히 빅 데이터 분류문제에 유용할 것으로 예상되는 온라인 타입 알고리즘과 병렬처리 알고리즘에 대하여 소개하고, 이러한 알고리즘들의 성능 및 장단점을 선형분류에 대한 모의실험을 통해서 살펴본다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001383928