메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제24권 제6호
발행연도
2013.12
수록면
1,113 - 1,125 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
기업의 부도를 예측하는 것은 회계나 재무 분야에서 중요한 연구주제이다. 지금까지 기업 부도예측을 위해 여러 가지 데이터마이닝 기법들이 적용되었으나 주로 단일 모형을 사용함으로서 복잡한 분류 문제에의 적용에 한계를 갖고 있었다. 본 논문에서는 최근에 각광받고 있는 SVM (support vector machine) 모형들을 결합한 앙상블 SVM 모형 (ensemble SVM model)을 부도예측에 사용하고자 한다. 제안된 앙상블 모형은 v-조각 교차 타당성 (v-fold cross-validation)에 의해 얻어진 여러 가지 모형 중에서 성능이 좋은 상위 k개의 단일 모형으로 구성하고 과반수 투표 방식 (majority voting)을 사용하여 미지의 클래스를 분류한다. 본 논문에서 제안된 앙상블 SVM 모형의 성능을 평가하기 위해 실제 기업의 재무비율 자료와 모의실험자료를 가지고 실험하였고, 실험결과 제안된 앙상블 모형이 여러 가지 평가척도 하에서 단일 SVM 모형들보다 좋은 성능을 보임을 알 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001384021