메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제27권 제1호
발행연도
2016.2
수록면
131 - 142 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
통계조사에서 이상치는 총계추정에 큰 영향을 줄 수 있다. 통계조사에서 보고된 값은 극단적이 아니지만 그것의 가중치 (weight)가 커서 추정값에 큰 영향을 주거나, 극단값이라 해도 그것이 작은 가중치를 가질 때 추정에 큰 영향을 주지 않는 경우도 있다. 이러한 극단값이나 추정에 영향을 주는 값들은 표본조사에서 민감하다. 일반적으로 치우친 분포를 가진 모집단에서 추출된 표본으로 조사를 하는 사업체 조사에서는 특별히 더 큰 영향을 준다. 본 연구에서는, 우리는 이상치를 판별하고 처리하는 방법에 대해서 다루고자 한다. 이상치 판별은 분위수에 기초해서 판정하였으며, 판정된 이상치는 여러 가지 다양한 방법을 적용해 보았다. 연구에서는 2가지 winsorised 방법과 세가지 cut-off 방법에 대하여 적용하였다. 그리고 시뮬레이션에서는 4가지 방법의 가중치를 각각 적용하여 진행하였다. 여러 가지 이상치 처리방법들을 비교해 본 결과 type I 윈저화 방법보다는 type II 윈저화 방법이 효율 적인 결과값을 보여주었으며, 가중치 변환방법들 중에서는 제곱근 변환을 통한 가중치 감소방법이 다른 처리방법에 비해 좋은 결과값을 보여주었다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001377519