메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Qiongxiu Li (Inha University) Van Huan Nguyen (Ton Duc Thang University) Jinsong Liu (Inha University) Hakil Kim (Inha University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.6 No.6
발행연도
2017.12
수록면
387 - 400 (14page)
DOI
10.5573/IEIESPC.2017.6.6.387

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a neighbor minutiae boost–based algorithm to address the challenges in fingerprint matching. The proposed algorithm imitates the behavior of human experts in order to conduct fingerprint matching. It is commonly known that human experts usually observe the relationship between minutiae to confirm correspondence. And then, a multi-feature–based score fusion method is proposed to combine features effectively to obtain a distinctive similarity score. The main idea is to maximize the information contained in fingerprints from two main parts: minutiae distribution pattern and global structural information. Minutiae pattern information is represented by the number of matched minutiae, unmatched minutiae similarity, and matched minutia ratio. Global structural information is demonstrated by singular point information and orientation field consistency. These features are extracted and fused to boost fingerprint recognition accuracy. Experimental results demonstrate the effectiveness of the proposed methods, which improve the overall performance by around 46%, on average, based on experiments with samples from the FVC2000, FVC2002, and FVC2004 fingerprint verification competitions.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Method
4. Performance Evaluation
5. Conclusion
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001667006