메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양혜경 (이화여자대학교) 용환승 (이화여자대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.3
발행연도
2018.3
수록면
280 - 287 (8page)
DOI
10.5626/JOK.2018.45.3.280

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 추천시스템과 데이터 분석 분야에서 고차원 형태의 텐서를 이용하는 연구가 증가하고 있다. 이는 고차원의 데이터인 텐서 분석을 통해 더 많은 잠재 요소와 잠재 패턴을 추출가능하기 때문이다. 그러나 고차원 형태인 텐서는 크기가 방대하고 계산이 복잡하기 때문에 텐서 분해를 통해 분석해야한다. 기존 텐서 도구들인 rTensor, pyTensor와 MATLAB은 단일 시스템에서 작동하기 때문에 방대한 양의 데이터를 처리하기 어렵다. 하둡을 이용한 텐서 분해 도구들도 있지만 처리 시간이 오래 걸린다. 따라서 본 논문에서는 인 메모리 기반의 빅데이터 시스템인 아파치 스파크를 기반으로 하는 텐서 분해 도구인 S-PARAFAC을 제안한다. S-PARAFAC은 텐서 분해 방법 중 PARAFAC 분해에 초점을 맞춰 아파치 스파크에 적합하게 변형하여 텐서 분해를 빠르게 분산 처리가능 하도록 하였다. 본 논문에서는 하둡을 기반의 텐서 분해 도구와 S-PARAFAC의 성능을 비교하여 약 4~25배 정도의 좋은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. S-PARAFAC 텐서 분해
4. 실험
5. 결론 및 향후연구
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0