메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pengbo Wang (Beihang University) Jingxuan Wang (Fudan University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.23 No.1
발행연도
2018.3
수록면
41 - 49 (9page)
DOI
10.4283/JMAG.2018.23.1.041

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower bounds of the response of a system including uncertain parameters is of immense significance in uncertainty analysis. This paper aims to evaluate the upper and lower bounds of magnetic vector potentials in a linear magnetostatic field efficiently with uncertainbut- bounded parameters. The uncertain-but-bounded parameters are represented by interval notations. By performing Taylor series expansion on the magnetic vector potentials obtained from the equilibrium governing equation and by using the properties of interval mathematics, we can calculate the upper and lower bounds of the magnetic vector potentials of a linear magnetostatic field. In order to evaluate the accuracy and efficiency of the proposed method, two numerical examples are used. The results illustrate that the precision of the proposed method is acceptable for engineering applications, and the computation time of the proposed method is significantly less than that of the Monte Carlo simulation, which is the most widely used method related to uncertainties. The Monte Carlo simulation requires a large number of samplings, and this leads to significant runtime consumption.

목차

1. Introduction
2. Interval Basics
3. Taylor Series Expansion for Evaluating the Bounds of Magnetic Vector Potentials
4. Numerical Examples
5. Conclusions
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-428-001901049