메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이찬우 (Kyunghee University) 채옥삼 (Kyunghee University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제23권 제4호(통권 제169호)
발행연도
2018.4
수록면
57 - 64 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose the automatic detection method for individual region separation using panorama image. Finding areas that contain individual teeth is one of the most important tasks in automating 3D models through individual tooth separation. In the conventional method, the maxillary and mandibular teeth regions are separated using a straight line or a specific CT slide, and the tooth regions are separated using a straight line in the vertical direction. In the conventional method, since the teeth are arranged in a curved shape, there is a problem that each tooth region is incorrectly detected in order to generate an accurate tooth region. This is a major obstacle to automating the creation of individual tooth models. In this study, we propose a method to find the correct tooth curve by using the jawbone curve which is very similar to the tooth curve in order to overcome the problem of finding the area containing the existing tooth. We have proposed a new method to accurately set individual tooth regions using the feature that individual teeth are arranged in a direction similar to the normal direction of the tooth alignment curve. In the proposed method, the maxillary and mandibular teeth can be more precisely separated than the conventional method, and the area including the individual teeth can be accurately set. Experiments using real dental CT images demonstrate the superiority of the proposed method.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Spacial Characteristics Analysis of Dental Arrangements
Ⅲ. The Process of separating individual tooth region
Ⅳ. Experiment Result
Ⅴ. Conclusion
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-002013573