메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영언 (서울과학기술대학교) 박구만 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제3호
발행연도
2018.5
수록면
421 - 430 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
많은 음성인식 시스템들은 MFCC와 HMM등의 분류 기법을 사용하여 사람의 음성을 인식한다. 그러나 이러한 음성인식 시스템은 단일 음성신호를 인식하는 것을 목적으로 설계되어, 인간과 기계사이의 일대일 음성 인식에는 적합하나, 애완동물 소리와 실내 소리같은 음성보다 다양하고 넓은 주파수의 소리 군으로 중첩된 음향 속에서 설정된 소리를 인식하기에는 제한이 있다. 중첩된 소리들의 주파수는 사람의 목소리보다 높은 최대 20 kHz까지 넓은 주파수 범위로 구성된다. 본 논문에서는 광역 사운드 스펙트로그램과 DNN에 기반한 케라스 시퀜셜 모델 기법을 활용하여 인지 주파수 범위를 넓게 확대하는 새로운 인식방법을 제안한다. 광역 사운드 스펙트로그램이 본 논문에서 설계된 특징 추출 및 분류 시스템과 같이 넓은 주파수 범위의 다양한 소리를 분석하고 실험하도록 채택되었다. 소리 인식률을 개선하기 위하여, 케라스 시퀜셜 모델이 사운드 스펙트로그램에 의하여 생성되어 추출된 특징을 사용하여 패턴인식을 수행하기 위한 방법으로 채용되었다. 제안된 특징 추출 및 분류 시스템이 광역 사운드 스펙트로그램과 케라스 시퀜셜 모델을 채용하여 애완동물 소리와 실내 소리같은 다양한 주파수들로 구성되어 중첩된 음향 속에서 설정된 소리를 우수하게 분류하는 것을 확인하였다. 그리고 중첩된 소리의 크기에 비례하여 인식에 미치는 특성과 영향을 단계별로 비교 분석하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 광역 사운드 스펙트로그램 과 KSM에 기반한 특징추출 및 분류
Ⅲ. 실험 시스템의 구성 및 실험 결과
Ⅳ. 결론 및 향후 연구 방향
참고문헌 (References)

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0