메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정원희 (세종대학교) 박길주 (메타라이츠) 구영현 (세종대학교) 김성현 (한국정보화진흥원) 유성준 (세종대학교) 조영도 (한국가스안전공사)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제23권 제2호
발행연도
2018.5
수록면
33 - 47 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
도시가스 배관은 지중에 매설되어 있기 때문에 세부 관리가 어렵고 다양한 위험에 노출되어 있다. 본 연구에서는 도시가스 배관압력 실시간 데이터를 분석해 배관압력 이상을 예측하고 전문가의 의사결정을 돕는 모델을 제안한다. 국내 도시가스 공급업체들 중 하나인 중부도시 가스사의 정압기에서 수집하는 실시간 배관압력 데이터와 시간변수, 외부환경변수를 통합해 분석 데이터로 사용한다. 아산시와 천안시에 위치하는 11개 정압기를 분석 대상으로 하며 분단위 배관압력 예측모델을 구현한다. Random forest, support vector regression(SVR), longshort term memory(LSTM) 알고리즘을 사용해 회귀모델을 구현한 결과 LSTM 모델에서 우수한 성능을 보인다. 아산시 배관압력 예측모델의 경우 LSTM 모델에서 RMSE가 0.011, MAPE가 0.494이며, 천안시 배관압력 예측모델의 경우 LSTM 모델에서 평균제곱근오차(root mean square error, RMSE)가 0.015, 절대평균백분율오차(mean absolute percentage error, MAPE)가 0.668로 가장 낮은 오류율을 보인다.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 실시간 배관압력 예측시스템
4. 변수 생성 및 선정
5. 데이터 통합 및 전처리
6. 예측모델 구현 및 실험결과
7. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-002234685