메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현 (포항공과대학교) 신재훈 (포항공과대학교) 이원기 (포항공과대학교) 조승우 (포항공과대학교) 이종혁 (포항공과대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.6
발행연도
2018.6
수록면
545 - 553 (9page)
DOI
10.5626/JOK.2018.45.6.545

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
기계번역 품질 예측은 정답번역문의 참고 없이 기계번역문장의 번역품질을 예측하는 것을 말하며, 최근 들어 기계번역분야에서 중요성이 강조되고 있다. 현재까지 영어-유럽어를 대상으로 기계번역 품질 예측 연구들이 진행되어 왔으며, 영어-한국어에 대해 기계번역 품질 예측을 시도한 사례가 없었다. 본 논문에서는 영어-한국어 기계번역 품질 예측을 위한 학습 데이터를 구축하고, 심층학습 기반의 모델을 적용하여 영어-한국어에 대한 기계번역 품질 예측을 수행한다. 학습 데이터 생성을 위해서는 기계번역문장에 기반한 새로운 정답번역문을 만드는 과정이 필요하며, 본 논문에서는 자유로운 어순과 다양한 형태가 가능한 한국어 문장의 특징을 고려하는 새로운 정답번역문을 만들기 위한 가이드라인을 제시한다. 또한 학습 데이터가 편향되는 문제를 완화하여 학습 데이터를 구축한다. 본 연구에서 구축한 학습데이터와 심층학습 기반의 모델을 이용한 실험 결과, 영어-한국어 기계번역 품질 예측이 잘 수행됨을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 영어-한국어 QE 데이터 구축 가이드라인
4. 심층학습 기반의 Predictor-Estimator 모델을 이용한 영어-한국어 기계번역 품질 예측 시스템
5. 실험
6. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0