메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yochan Kim (Korea Atomic Energy Research Institute) Jinkyun Park (Korea Atomic Energy Research Institute)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제37권 제3호
발행연도
2018.6
수록면
229 - 241 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: In this paper, some improvements for a more practical and realistic application of HRA are suggested with an example of an HRA method recently developed.
Background: Various HRA methods have been developed for quantifying human reliability of nuclear power plants. With technical bases of cognitive engineering and HRA practices, those methods aimed to reduce analysis variability and enhance traceability of the HRA process. However, several related issues needing to be resolved, were still remained.
Method: With reference to recently conducted research, some measures alleviating the indicated issues are suggested. Empirical studies and several kinds of HRA methods were benchmarked for deriving improvements.
Results: The four strategies including plant-specific guideline for task analysis, distinctive human error classification, grounding on empirical data, and clarification of performance shaping factor definition were suggested in this study.
Conclusion: A more practical method can be generated with a foundation of human cognitive theoretic and empirical findings for a next generation of HRA method.
Application: A new method is being developed for human operators in computerbased control rooms. The above suggestions will be implemented for enhanced applications of HRAs.

목차

1. Introduction
2. Previous Research
3. Improvements for Practical Applications
4. Application Example of Suggestions
5. Discussion and Future Works
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-003167797