메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
백재욱 (한국방송통신대학교)
저널정보
한국신뢰성학회 신뢰성응용연구 신뢰성응용연구 제18권 제2호
발행연도
2018.6
수록면
130 - 142 (13page)
DOI
10.33162/JAR.2018.06.18.2.130

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: The purpose of this study is to introduce regression method in the presence of competing risks and to show how you can use the method with hypothetical data.
Methods: Survival analysis has been widely used in biostatistics division. But the same method has not been utilized in reliability division. Especially competing risks, where more than a couple of causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not utilized in the area of reliability or they are analysed in the wrong way. Specifically Kaplan-Meier method is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced. In addition, sample competing risks data are analysed using cumulative incidence function along with some graphs. Lastly we compare cumulative incidence functions with regression type analysis briefly.
Results: We used cumulative incidence function to calculate the survival probability or failure probability in the presence of competing risks. We also drew some useful graphs depicting the failure trend over the lifetime.
Conclusion: This research shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime in the presence of competing risks. Cumulative incidence function is shown to be useful in stead. Some graphs using the cumulative incidence functions are also shown to be informative.

목차

1. 서론
2. Kaplan-Meier 방법의 문제점과 CIF의 소개
3. 경쟁적 위험하에서의 회귀분석
4. R을 활용한 통계적 추론
5. 결론 및 논의
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-323-003118522