메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chao Li (Beihang University) Huoxing Liu (Beihang University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.11 No.2
발행연도
2018.6
수록면
129 - 138 (10page)
DOI
10.5293/IJFMS.2018.11.2.129

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To investigate the internal distribution regularities of shock wave structure in 1+1/2 (without low pressure guide vane) counter-rotating turbine, both steady and unsteady numerical simulation about a designed 1+1/2 counter-rotating turbine are conducted, and experimental research about the shock wave structure of high pressure guide vane, high pressure rotor and low pressure rotor was also conducted by using the schlieren apparatus under different working conditions. The numerical simulation divides into two parts: steady and unsteady calculation. The result of steady simulation under designed condition shows that there appears supersonic flow and shock wave at the exit of root in high pressure guide vane, while supersonic flow appears at the entire passage of the blade outlet in both the high pressure rotor and low pressure rotor, together with strong shock wave and complex wave structures. From the point of the unsteady results, the unsteady effect has few influence on the flow field of high pressure guide vane, but the wake of the high pressure guide leaves periodically sweeps through the front edge of the high pressure blade and there presents strong unsteady effect on flow field of high pressure rotor. Then, to deeply research the characteristics of the shock wave structure, 50% height section of the blade of the three types of blades are extracted respectively to make plane cascades which are conducted blowing experiments in supersonic wind tunnel. During the experiment schlieren display technology is used to record the shock wave structure changing process in three cascade flow passage under the design Angle of attack when pressure ratio changes from 1.7 to 2.5. The final photograph were analyzed by comparing with the CFD results. Results show that with the increase of expansion ratio, the wave structures in both high and low pressure blade channel move toward the exit and the caudal interference between the outer tail wave and is strengthened gradually. The results show that the current design of high pressure blade and low pressure blade show better advantages for controlling the structure of the shock wave.

목차

Abstract
1. Introduction
2. Numerical Simulation
3. The Experimental Study
4. Conclusion
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-554-003063127