메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한교통학회 대한교통학회지 대한교통학회지 제33권 제1호
발행연도
2015.2
수록면
14 - 28 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
2000년대 중반부터 인터넷 검색 트래픽을 활용한 다양한 연구가 진행되었다. 대표적으로 구글은 미국의 독감 발병 상황을 인터넷 유저의 검색 패턴을 통해 예측하는 서비스를 만들기도 하였다. 교통지표 역시 인터넷 검색 패턴과 유사할 수 있다는 가설을 확인하기 위하여, 검색 트래픽 데이터를 활용하여 고속도로의 진입 교통량과 구간 속도를 추정하는 모형을 구축하고 적합도 등을 확인하는 것이 본 연구의 목적이다. 그 결과, 첫째, 출퇴근의 상시적 통행이 이루어지는 지점의 TCS 진입 교통량 모형은 구글 검색 트래픽이 입력변수로 우수하였고, 검색 트래픽과는 음의 상관관계를 보였다. 둘째, 여가 통행이 집중적으로 나타났던 지점의 TCS 진입 교통량 모형은 네이버의 검색 트래픽이 입력변수로 선정되었으며, 검색 트래픽과는 양의 상관관계가 나타났다. 셋째, VDS 속도의 경우 시계열 도표상 검색 트래픽과 음의 상관관계를 보였다. 넷째, 검색 트래픽을 입력변수로 활용한 전이함수 잡음 시계열 모형은 그렇지 않은 시계열 모형에 비해 비교적 적합도가 우수하다는 결과를 도출하였다. 다만, VDS 속도 모형의 경우 다수의 입력변수가 포함되고 모형 계수의 부호가 상이함에 따른 한계가 존재하였다. 향후 검색 트래픽의 출처나 검색어, 혹은 시차 및 집계 단위에 대한 추가적 연구가 진행된다면, 교통 분야의 빅 데이터 연구시 활용 폭이 넓어질 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-053-003359648