메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Won-Poong Lee (Inha University) Jin-Young Choi (LG CNS) Young-Ho Park (Hyundai Electric & Energy Systems) Soo-Nam Kim (Hyundai Electric & Energy Systems) Dong-Jun Won (Inha University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.13 No.5
발행연도
2018.9
수록면
1,852 - 1,863 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Direct current(DC) systems have recently attracted attention due to the increase in DC loads and distributed generations, such as renewable energy sources. Among these technologies, there has been much research into DC distribution systems or DC microgrids. Within this body of research, the main topics have been about optimum control and operation methods in terms of improving power efficiency. When DC systems are controlled and operated using power electronic devices such as converters, it is necessary to design and analyze them by considering the power electronics sections. For this reason, we propose a scalable DC system analysis algorithm, which considers various system configurations depending on the operating mode and location of the converter. The algorithm consists of power flow fault current calculations, and the results of the algorithm can be used for designing DC systems. The algorithm is implemented using MATLAB with defined input and output data. The verification of the algorithm is mainly performed using ETAP software, and the accuracy of the algorithm analysis can be confirmed through the results.

목차

Abstract
1. Introduction
2. Background for Analysis of DC Systems
3. Component Modeling for Power Flow Analysis
4. Component Modeling for Fault Current Analysis
5. Algorithm for DC Power Flow and Fault Current Analysis
6. Algorithm Verification
7. Conclusion
8. Appendix
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-560-003325337