메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박연경 (LIG넥스원) 이혜원 (LIG넥스원) 김상문 (LIG넥스원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제19권 제8호
발행연도
2018.8
수록면
64 - 70 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
무기 체계(or 구성품) 개발은 한정된 개발기간과비용 등의 제한으로 시험 횟수가 많지 않아, 고장관련 축적된 데이터의 규모도 적다. 그러나 운용 중 발생한 고장 및 정비내역은 많은 부분 전산 데이터로 관리하고 있기 때문에 이를 활용한 무기 체계(or 구성품)의 고장원인 분석은 가능하다. 다만 다양한 무기체계의 고장 및 정비내역 작성 규격이 각 군 별, 업체별 상이하고, 고장 원인의 구체적 내역은 비정형 텍스트 데이터로 기술되어 있기때문에 이를 분석하는데 어려움이 있었다. 그러나 오늘날 빅데이터 처리 기술과 기계학습(Machine Learning) 알고리즘의 발전, HW연산 능력의 개선과 맞물려, 상기와 같은 비정형 데이터를 처리 할 수 있는 여러 가지 방법들이 시도 되고 있으며, 주요한 연구 분야로 활발히 연구되고 있다. 본 논문에서는 국방 무기 체계(or 구성품)의 고장/정비 관련 비정형 데이터를 기계학습 기법 중 하나인 doc2vec을 적용하여 고장사례 분석 방안에 대하여 제시한다.

목차

요약
Abstract
1. 서론
2. 본론
3. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-003393552