메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ying Wang (Dongguk Univ. Gyeongju) Young-Chan Lee (Dongguk Univ. Gyeongju)
저널정보
한국경영학회 한국경영학회 융합학술대회 한국경영학회 2018년 제20회 경영관련학회 통합학술대회
발행연도
2018.8
수록면
1,601 - 1,645 (45page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
As microfinance companies has focused on improving rural finance and helping SMEs to solve financing difficulties, it has received great attention from governments, scholars, and related institutions since its emergence. However, there are many factors constrained by the outside world, leading to frequent occurrence of various types of debt escaping and high loan default rate. All these have caused a higher risk of micro loan business. Therefore, how to establish a credit risk assessment model to reduce the credit risk of microfinance becomes an urgent issue at present. Data mining techniques can make inductive reasoning and automatically classify customers" credit risk levels. Thus, an application of data mining techniques to credit assessment models can solve some of the current credit risk issues faced by the microfinance industry. This study compares several commonly used risk assessment models and proposes a personal credit evaluation model based on data mining techniques using personal consumer loan big data of microfinance company in Chain. Specifically, decision tree, neural networks, and logistic regression were used to serve the research purpose. The results showed that decision tree has best prediction performance.

목차

ABSTRACT
1. Introduction
2. Literature Review
3. Research Method
4. Empirical Analysis
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0