메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현진 (서울여자대학교) 홍헬렌 (서울여자대학교) 장기돈 (연세대학교) 나군호 (연세대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.9
발행연도
2018.9
수록면
937 - 942 (6page)
DOI
10.5626/JOK.2018.45.9.937

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
부분신장절제술 후 절제술을 수행한 반대쪽 신장의 보상성 비대를 예측하기 위해 신실질을 분할하는 것이 필요하다. 본 논문에서는 복부 CT 영상에서 다중 아틀라스 기반 형상 및 밝기값 정보를 사용한 신실질 자동 분할 방법을 제안한다. 첫째, 볼륨 기반 유사 정합 및 밝기값 기반 유사도 측정을 통해 유사 아틀라스를 선정한다. 둘째, 볼륨 기반 유사 정합 및 아틀라스 기반 어파인 정합의 단계적 정합 및 밝기값 기반 제한된 지역적 가중투표를 통해 신실질을 분할한다. 셋째, 밝기값의 분포가 훈련 영상과 달라 분할이 제대로 되지 않는 데이터에 대해 가우시안 혼합 모델 기반 다중 임계치 기법을 통한 피질 분할 및 형상확률맵을 이용한 수질 분할 방법을 선택적으로 수행한다. 제안방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 91.34%로, 다중 투표 기법을 통한 분할 및 지역적 가중투표를 통한 분할 방법대비 다이스 유사계수가 각각 18.19%, 1.35% 향상되었다.

목차

요약
Abstract
1. 서론
2. 복부 CT 영상에서 신실질 자동 분할
3. 실험결과 및 분석
4. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0