메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Daiju Hiramatsu (Akita Prefectural University) Hirokazu Madokoro (Akita Prefectural University) Kazuhito Sato (Akita Prefectural University) Kazuhisa Nakasho (Yamaguchi University) Nobuhiro Shimoi (Akita Prefectural University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
81 - 86 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a method to generate filters for shaping sensor signals using genetic network programming (GNP) for automatic calibration to absorb individual differences. In our previous study, we developed a prototype that incorporates bed-leaving detection sensors using piezoelectric films and a machine-learning-based behavior recognition method using counter-propagation networks (CPNs). The system can learn topology and relations between input features and teaching signals. However, our method based on CPNs was insufficient to address individual differences in parameters such as weight and height used for bed-learning behavior recognition. For this study, we actualize automatic calibration of sensor signals for invariance relative to these body parameters. This paper presents two experimentally obtained results obtained using sensor signals obtained in our previous study. For the preliminary experiment, we optimized the original sensor signals to approximate high-accuracy ideal sensor signals using generated filters. We used fitness to assess the difference between original signal patterns and ideal signal patterns. For the application experiment, we used fitness calculated from the recognition accuracy of CPNs. The experimentally obtained results reveal that the mean accuracy improved 6.53 percentage point for three datasets.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. DATASETS
4. PRELIMINARY EXPERIMENT
5. APPLICATION EXPERIMENT
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003537999