메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jaehoon Cha (Xi’an Jiaotong-Liverpool University) Sanghyuk Lee (Xi’an Jiaotong-Liverpool University) Kyeong Soo Kim (Xi’an Jiaotong-Liverpool University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
87 - 91 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Key issues of indoor localization is taking full advantages and overcoming its disadvantages. Indoor localization based on Wi-Fi fingerprinting attracts researchers’ attentions since it does not require new infrastructure and devices. Many devices such as smart phones and laptops, which have a function to capture Wi-Fi signals, can be used for Wi-Fi fingerprinting. However, due to unreliable Wi-Fi signals, there are still difficulty to achieve high positioning accuracy. The unreliable signal disturbs devices to find their locations. As a result, getting localization with devices sometimes makes a wrong decision in building classification. It is useless for people to find a destination floor if they are in different building. In this paper, we propose two consecutive multi-layer perceptrons to get more precise localization. With sumple structure, we get better performance and show precise decision results in building classification, which is critical in Wi-Fi fingerprinting. We use UJIndoorLoc dataset which is open dataset.

목차

Abstract
1. INTRODUCTION
2. THE DATA SET
3. TWO CONSECUTIVE MULTI-LAYER PERCEPTRON
4. RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538007