메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shulin Li (Purdue University) HyunJong Kim (Chungnam National University) Sukhoon Lee (Chungnam National University) John C. Gallagher (Wright State University) Daeun Kim (Chungnam National University) SungWook Park (Chungnam National University) Eric T. Matson (Purdue University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
862 - 866 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The emergence of Unmanned Aerial Vehicles (UAV) is pervasive throughout society. A growing segment of usage is of a dubious nature for harassment, illegal activity and terrorism. Detection of unknown UAV’s has become a requirement for many organizations and agencies to thwart the emergence of UAV’s that are in some way threatening. To detect UAV, the use of acoustic signals has become an useful area of research. Convolutional Neural Networks (CNNs) are one of several models of deep learning, applied in various fields such as image recognition and natural language processing. In this project, we design a system to detect the presence of possible detection and payload detection using CNNs on the basis of sound data generated from UAV flights. The sound of recorded drones is pre-processed into spectral data by Fast Fourier Transform (FFT) and Mel-Frequency Cepstrum (MFCC) and given as the input value to the CNN model. The results show that it is possible to detect and differentiate UAVs which have standard weight and also with additional payload. In short, the project has two detection goals. One is the acoustic detection of a UAV, and the second is the determination if that UAV has a payload.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENT
4. CONCLUSION
5. ACKNOWLEDGEMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003539211