메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강동범 (제주대학교) 고경남 (제주대학교)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제38권 제5호
발행연도
2018.10
수록면
11 - 25 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Ln-least method is commonly used to estimate the Weibull parameters from the observed wind speed data. In previous studies, the bin method has been used to calculate the cumulative frequency distribution for the Ln-least method. The purpose of this study is to obtain better performance in the Ln-least method by applying probability plotting position(PPP) instead of the bin method. Two types of the wind speed data were used for the analysis. One was the observed wind speed data taken from three sites with different topographical conditions. The other was the virtual wind speed data which were statistically generated by a random variable with known Weibull parameters. Also, ten types of PPP formulas were applied which were Hazen, California, Weibull, Blom, Gringorten, Chegodayev, Cunnane, Tukey, Beard and Median. In addition, in order to suggest the most suitable PPP formula for estimating Weibull parameters, two accuracy tests, the root mean square error(RMSE) and R² tests, were performed. As a result, all of PPPs showed better performances than the bin method and the best PPP was the Hazen formula. In the RMSE test, compared with the bin method, the Hazen formula increased estimation performance by 38.2% for the observed wind speed data and by 37.0% for the virtual wind speed data. For the R² test, the Hazen formula improved the performance by 1.2% and 2.7%, respectively. In addition, the performance of the PPP depended on the frequency of low wind speeds and wind speed variability.

목차

Abstract
1. 서론
2. 와이블 분포(Weibull distribution)
3. 풍속 데이터
4. 확률도시위치 공식의 Lnleast방법 적용
5. 확률도시위치 적용 시 Lnleast방법의 예측 정확도 비교
6. 결론
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-563-000050670