메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신수연 (충북대학교) 김동명 (충북대학교) 서재원 (충북대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제18권 제11호
발행연도
2018.11
수록면
447 - 454 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 컨볼루션 신경망으로 이루어진 학습 모델을 통해 스테레오 영상의 깊이영상 생성 알고리즘을 제안한다. 제안하는 알고리즘은 좌, 우 시차 영상을 입력으로 받아 각 시차영상의 주요 특징을 추출하는 특징 추출부와 추출된 특징을 이용하여 시차 정보를 학습하는 깊이 학습부로 구성된다. 우선 특징 추출부는 2D CNN 계층들로 이루어진 익셉션 모듈(xception module) 및 ASPP 모듈(atrous spatial pyramid pooling) module을 통해 각각의 시차영상에 대한 특징맵을 추출한다. 그 후 각 시차에 대한 특징 맵을 시차에 따라 3차원 형태로 쌓아 3D CNN을 통해 깊이 추정 가중치를 학습하는 깊이 학습부를 거친 후 깊이 영상을 추정한다. 제안하는 알고리즘은 객체 영역에 대해 기존의 다른 학습 알고리즘들 보다 정확한 깊이를 추정하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험 결과
Ⅳ. 결론
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-310-000211758