메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jin-Gil Kim (Kyungpook National University) Sunyo Jung (Kyungpook National University)
저널정보
한국잡초학회·한국잔디학회 Weed&Turfgrass Science Weed&Turfgrass Science Vol.2 No.3
발행연도
2013.9
수록면
254 - 259 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The mechanisms of resistance to oxyfluorfen (OF) and paraquat (PQ) were investigated in rice plants. Examination of the concentration dependence of oxyfluorfen- or paraquat-induced increase in conductivity showed that conductivities in the OF- and PQ-treated leaf squares were increased with 0.1 μM oxyfluorfen and 0.01 μM paraquat and further increased with higher concentrations. The levels of conductivity were approximately 10-times higher in the PQ-treated plants than in the OF-treated plants, indicating that the PQ-treated plants suffered more severe photodynamic damage than the OF-treated plants. The photooxidative stress caused by foliar application of either 50 μM oxyfluorfen or 100 μM paraquat increased the enzyme activities of ascorbate peroxidase and peroxidase 1 day after the herbicide treatments and then further increased their enzyme activities 2 days after the treatments. The activities of catalase began to increase 2 days after the oxyfluorfen and paraquat treatments. These antioxidant enzymes appear to play an essential part of defense mechanisms against oxyfluorfen and paraquat. Our results demonstrate that paraquat caused more severe oxidative stress, as indicated by a greater change in conductivity, thereby resulting in greater increases in antioxidant responses in plants, compared with those of oxyfluorfen.

목차

ABSTRACT
Introduction
Materials and Methods
Results and Discussion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-523-000157349