메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박수빈 (동아대학교) 강대성 (동아대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제16권 제12호(JKIIT, Vol.16, No.12)
발행연도
2018.12
수록면
75 - 83 (9page)
DOI
10.14801/jkiit.2018.16.12.75

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 자율 주행 자동차에 대한 연구가 활발하다. 자율 주행 자동차는 보행자 검출 및 인식 기술이 중요하다. 최근에 주로 사용되는 CNN(Convolutional Neural Network)을 이용한 보행자 검출은 대체로 좋은 성능을 보이나 영상의 환경에 따른 성능 저하가 있다. 본 논문에서는 LGP-FL(Local Gradient Pattern-Feature Layer)을 추가한 CNN Network를 기반으로 해마 신경망의 장기 기억 구조를 적용한 보행자 검출 시스템을 제안한다. 먼저 입력 이미지를 227x227의 크기로 변경한다. 그 후 총 5개 층의 Convolution layer를 거쳐 특징을 추출한다. 그 과정에서 추가되는 LGP-FL에서는 LGP 특징 패턴을 추출하여 출현 빈도수가 높은 패턴을 장기 기억 장치에 저장한다. 이후 검출 과정에서 밝기 및 색상 변화에 강인한 LGP 특징 패턴 정보를 이용해 검출함으로써 보다 정확하게 보행자를 검출할 수 있다. 기존의 방법들과 제안하는 기법의 비교를 통해 약 1~4%의 검출률 증가를 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 이론
Ⅲ. 제안하는 방법
Ⅳ. 실험 결과
Ⅴ. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000148204