메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최동빈 (단국대학교) 박용범 (단국대학교)
저널정보
ICT플랫폼학회 JOURNAL OF PLATFORM TECHNOLOGY JOURNAL OF PLATFORM TECHNOLOGY Vol.6 No.4
발행연도
2018.12
수록면
34 - 40 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 인공신경망은 단일 작업에 대해선 뛰어난 성능을 보이나, 다른 종류의 작업을 학습하면 이전 학습 내용을 잊어버리는 단점이 있다. 이를 catastrophic forgetting이라고 한다. 인공신경망의 활용도를 높이긴 위해선 이 현상을 극복해야 한다. catastrophic forgetting을 극복하기 위한 여러 노력이 있다. 하지만 많은 노력이 있었음에도 완벽하게 catastrophic forgetting을 극복하지는 못하였다. 본 논문에서는 여러 노력 중 elastic weight consolidation(EWC)에 사용되는 핵심 개념을 이용하여, 순차적 반복학습을 제시한다. 인공신경망 학습에 많이 쓰이는 MNIST를 확장한 EMNIST 데이터 셋을 이용하여 catastrophic forgetting 현상을 재현하고 이를 순차적 반복학습을 통해 극복하는 실험을 진행하였으며, 그 결과 모든 작업에 대해서 학습이 가능하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 순차적 반복 학습을 통한 다중 학습 성능 측정
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론
참고문헌

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000341127