메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Eric McKinney (Utah State University) Minwoo Chang (Korea Railroad Research Institute) Marc Maguire (Utah State University) Yan Sun (Utah State University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.13 No.3
발행연도
2019.3
수록면
321 - 338 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
While internal and external unbonded tendons are widely utilized in concrete structures, an analytical solution for the increase in unbonded tendon stress at ultimate strength, Δf<SUB>ps</SUB> , is challenging due to the lack of bond between strand and concrete. Moreover, most analysis methods do not provide high correlation due to the limited available test data. The aim of this paper is to use advanced statistical techniques to develop a solution to the unbonded strand stress increase problem, which phenomenological models by themselves have done poorly. In this paper, Principal Component Analysis (PCA), and Sparse Principal Component Analysis (SPCA) are employed on different sets of candidate variables, amongst the material and sectional properties from a database of Continuous unbonded tendon reinforced members in the literature. Predictions of Δf<SUB>ps</SUB> are made via Principal Component Regression models, and the method proposed, linear models using SPCA, are shown to improve over current models (best case R<SUP>2</SUP> of 0.27, measured-topredicted ratio [λ] of 1.34) with linear equations. These models produced an R<SUP>2</SUP> of 0.54, 0.70 and λ of 1.03, and 0.99 for the internal and external datasets respectively.

목차

Abstract
1. Introduction
2. Principal Component Analysis (PCA) and Sparse PCA (SPCA)
3. Principal Component Analysis Application
4. Sparse Principal Components Application
5 Discussion
6. Summary and Conclusions
References

참고문헌 (48)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0