메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pedro B.V. Bermudez (University of Science and Technology) Kiwoong Jung (Hanyang University) HyeonChyeol Hwang (Korea Railroad Research Institute) Jaeho Kwak (Korea Railroad Research Institute)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.2
발행연도
2019.4
수록면
136 - 142 (7page)
DOI
10.5573/IEIESPC.2019.8.2.136

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Internet of Things (IoT) and Bluetooth Low Energy (BLE) technologies are drawing attention in the trend to integrate electronic devices and services. One example of an IoT application is a smart fare collection/payment system. Because people carry transportation cards nowadays, it is troublesome to tap the card every time, but making payment automatic by eliminating the tapping operation lets a greater number of passengers take public transportation in a shorter time. The first step toward a smart transportation fare collection system is passenger detection. One way to detect a passenge is by received signal strength indication (RSSI). The basic idea consists of adding BLE transmitters (beacons) to the vehicles and comparing intensity (power) between signals transmitted and received. However, due to multi-path propagation and fading effects, RSSI is not sufficiently accurate to calculate an exact location. Therefore, instead of determining the exact position, it is preferable to only check if the passenger is inside or outside the vehicle. In this support vector machine estimation method, RSSI signals are filtered using a moving average filter. Algorithm estimation efficiency was 92.51% (on average) for one beacon, and close to 100% for five beacons.

목차

Abstract
1. Introduction
2. Related Work
3. Method
4. Results
5. Conclusion
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0