메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Wonseok Jung (Namseoul University) Hyeon Park (IoT Research Department Electronics and Telecommunications Research Institute) Se-Han Kim (IoT Research Department Electronics and Telecommunications Research Institute) Jeongwook Seo (Namseoul University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2019 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.11 No.1
발행연도
2019.6
수록면
337 - 340 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we implement object detection system for animal disease prevention through Faster Region-based Convolutional Neural Network (R-CNN) model and You Only Look Once (YOLO) v3 model. For object detection systems, we derive visual targets (pigs, human, trucks) and create open dataset through image collection and labeling. The open dataset is used to design the Faster R-CNN model for livestock disease detection of the object detection engine and the YOLOv3 model for farm environment detection of the object detection engine is designed using the pre-learned parameters. For the experiment, we use a webcam to capture the image of the visual target and detect the object using the designed model. The detected result is encoded for sharing. Then, the detection result is transmitted to the Internet of Things (IoT) server through the IoT client conforming to oneM2M standard. As a result, the Faster R-CNN model for animal disease detection was about 43.58%, and the YOLOv3 model for farm environment detection was about 55.17% and about 62.16%, respectively. The encoded data collected in the IoT server is decoded and sent to the registered users through the social network service (SNS) agent to implement the object detection system for the prevention of livestock diseases.

목차

Abstract
I. INTRODUCTION
II. PROPOSED OBJECT DETECTION SYSTEM
III. EXPERIMENTAL RESULTS
IV. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000921221