메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
심승보 (한국건설기술연구원) 최상일 (한국건설기술연구원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제20권 제7호
발행연도
2019.7
수록면
622 - 629 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 정부는 건설 산업의 재해율과 사고 사망률이 전체 산업 중 높은 비율을 차지한다는 점을 개선하기 위하여 새로운 대책을 강구하고 있다. 특히 4차 산업혁명의 시대적 흐름에 맞춰 ICT 기술과 융합된 건설 기술 개발에 집중적으로 투자하고 있다. 이런 상황에 대응하고자 본 논문에서는 건설 기계를 사용하는 작업에서 작업자의 안전성 향상을 위한 방법으로, 건설 기계 운전자와 주변 작업자 간의 작업 상황 정보를 공유하고 인지할 수 있는 개념을 제시하였다. 그리고 해당 개념의 일부를 실현하고자 카메라를 이용한 인공 지능 기반 영상처리 기술을 활용하여 토공 작업에 접목시켰다. 그 중에서도 다짐 장비를 이용한 실험을 통해 YOLO-v3 기반의 영상 처리 알고리즘으로 토공 작업 중에 주변 작업자 상황을 인지하고 위험 상황 여부를 판단할 수 있는 알고리즘을 구현하였다. 그 결과 본 알고리즘은 동영상에서 초당 15.06프레임을 처리하며 90.48%의 정확도로 건설 기계 주변 위험 상황을 인지할 수 있다. 향후 이 같은 기술을 활용하여 건설 현장의 안전사고 예방에 기여하고자 한다.

목차

요약
Abstract
1. 건설 산업 재해 현황과 기술 동향
2. 현장 실험과 알고리즘 구현
3. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0