메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
양승한 (한국과학기술원) 정승준 (한국과학기술원) 강희광 (삼성전자) 김창익 (한국과학기술원)
저널정보
대한전자공학회 대한전자공학회 학술대회 2019년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2019.6
수록면
480 - 488 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, the development of computer vision technologies has also shown excellent performance in complex tasks such as behavioral recognition. Therefore, several studies provide datasets for behavior recognition tasks, including sign language datasets. In many countries, researchers are already carrying out studies to automatically recognize and interpret sign language to facilitate communication with deaf people. However, there is no dataset aiming at sign language recognition that is used in Korea yet, and research on this is insufficient. Since sign language varies from country to country, the need for a dataset for Korean sign language is sufficient. Therefore, this paper aims to provide a dataset that can incorporate Korean sign language into behavior recognition technology using deep learning. The existing Korean sign language video is distributed for educational purposes and is not suitable for network learning. So we present the Korean Sign Language (KSL)dataset. The dataset was composed of sign language by 20 deaf people, all of which consist of 77 words. We train and evaluate this dataset in deep learning networks that have recently achieved excellent performance in the behavior recognition task. Also, we have confirmed through the deconvolution-based visualization method that the deep learning network fully understands the characteristics of the dataset.

목차

Abstract
I. 서론
II. 본론
III. 실험
IV. 결론
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0