메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Utpal Kumar Das (University of Malaya) Kok Soon Tey (University of Malaya) Mohd Yamani Idna Idris (University of Malaya) Saad Mekhilef (University of Malaya)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2019-ECCE Asia
발행연도
2019.5
수록면
1,599 - 1,604 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Photovoltaic (PV) system can be one of the renewable energy source used to charge the electric batteries. However, a significant amount of PV power is wasted if the maximum available power does not fully utilized by the batteries charging process appropriately. In this study, a maximum power flow management technique is proposed for stand-alone PV based battery charging system. A set of Li-ion battery cells of different capacity and state of charge (SOC) is considered for charging. A decentralize three stages constant current/constant voltage (CC/CV) charging strategy and DC-DC buck converter with maximum power point tracking (MPPT) is utilized to charge these battery cells by using the PV system. A maximum power flow management algorithm based on forecasted PV generated power is proposed to select the appropriate number of battery cells for charging at a particular time that able to receive maximum power from the PV system. In addition, the different preventive measure including overheating and overcharging is also considered in the charging process. The simulated system achieved 88.37% utilization of PV generated power.

목차

Abstract
I. INTRODUCTION
II. SUPPORT VECTOR REGRESSION BASED PV POWERFORECASTING MODE
III. PROPOSED BATTERY CHARGING MANAGEMENT SYSTEM
IV. RESULTS AND DISCUSSION
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0