메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Bo Long (University of Electronic Science and Technology of China) Yong Liao (University of Electronic Science and Technology of China) YuFei Dai (University of Electronic Science and Technology of China) LiJun Huang (University of Electronic Science and Technology of China) Xin Lu (University of Electronic Science and Technology of China) Yong Chen (University of Electronic Science and Technology of China) FuSheng Li (University of Electronic Science and Technology of China)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2019-ECCE Asia
발행연도
2019.5
수록면
1,885 - 1,891 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Transformerless grid-connected inverters, due to their advantages in high efficiency, small volume and light weight, gain more research and interest in recent years. Due to the asymmetrical driving signal in pulse-width-modulation (PWM) caused by time-delay, zero-drift of the current sensors and imparities of the power transistors, etc. Output of the grid current contains dc component. As a result, power quality of the grid is degraded. In this paper, a dc component suppression scheme with recursive integral PI controller are introduced, according to the change tendency of tracking error, the coefficients of PI controller are regulated by BP neural network in real time, and the global optimization requirements are met. Sliding-Window-Double-Iteration-Method (SWDIM) is utilized for fast dc current extraction. Simulation results from a 2-kW three-phase grid-connected inverter confirm the effectiveness of the proposed scheme.

목차

Abstract
I. INTRODUCTION
II. IMPACTS OF TIME-DELAY,SCALING ERRORS OF SENSORS,UNBALANCED VOLTAGE ON GRID CURRENT PERFORMANCE
III. PROPOSED DC COMPONENT SUPPRESSION SCHEME USING RECURSIVE INTEGRAL PI-REPETITIVE CONTROL BASED ON BP NEURAL NETWORK
IV. SIMULATION RESULTS
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0