메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박다은 (이화여자대학교) 홍해령 (이화여자대학교) 박영경 (이화여자대학교)
저널정보
한국색채학회 한국색채학회논문집 한국색채학회논문집 제33권 제3호(통권 제83호)
발행연도
2019.8
수록면
36 - 44 (9page)
DOI
10.17289/jkscs.33.3.201908.36

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Personalized makeup is preferred based on individual skin color diagnosis. In accordance, the need to diagnose skin color accurately is required. Skin color varies across different body locations and therefore inaccurate to measure skin color. For these reasons, human skin color is hard measure as a single color value. Therefore, this study investigated how to classify the tone and brightness of human skin by hue than to measure the skin color. Hue is easier for non-professionals to answer and has a wider choice than warm and cool based skin color. In this study, detailed classification of skin colors was attempted using skin color specimens and actual facial images. Based on the PANTONE SkinToneTM Guide, and real skin images, the skin was classified in terms of six hues of Reddish / Yellowish / Orangish / Greenish / Bluish / Purplish. Considering that skin color can be explained by relative values, the measurement data was converted to a difference (delta) from the average value. In skin colors, Redness (a*) and Yellowess (b*) were calculated by classifying each of them into two large categories and to clearly distinguish Lightness (L*) and Chroma (C*) from the tone graph. Δa*(Redness) and ΔL*(Lightness) are calculated as differences from average value. In the same way, Δb*(Yellowness)-ΔC*(Chroma) was also calculated to explain the hue classification. We also identified that Korean skin color is divided into yellow, reddish, and orangish and the relationship with Δb* and ΔC* values of CIELAB.

목차

Abstract
1. Introduction
2. Method of Research
3. Result
4. Discussion
5. Conclusion
References

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-651-000983160