메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김용석 (University of Ulsan) 최성웅 (University of Ulsan) 양순용 (University of Ulsan)
저널정보
유공압건설기계학회 드라이브·컨트롤 드라이브·컨트롤 Vol.16 No.3
발행연도
2019.9
수록면
51 - 58 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective of this study was to investigate a simulation technology for the AM field based on ANSYS Inc.. The introduction of metal 3D printing AM process, and the examining of the present status of AM process simulation software, and the AM process simulation processor were done in the previous study (part 1). This present study (part 2) examined the use of the AM process simulation processor, presented in Part 1, through direct execution of Topology Optimization, Ansys Workbench, Additive Print and Additive Science. Topology Optimization can optimize additive geometry to reduce mass while maintaining strength for AM products. This can reduce the amount of material required for additive and significantly reduce additive build time. Ansys Workbench and Additive Print simulate the build process in the AM process and optimize various process variables (printing parameters and supporter composition), which will enable the AM to predict the problems that may occur during the build process, and can also be used to predict and correct deformations in geometry. Additive Science can simulate the material to find the material characteristic before the AM process simulation or build-up. This can be done by combining specimen preparation, measurement, and simulation for material measurements to find the exact material characteristics. This study will enable the understanding of the general process of AM simulation more easily. Furthermore, it will be of great help to a reader who wants to experience and appreciate AM simulation for the first time.

목차

Abstract
1. 서론
2. AM 공정 시뮬레이션 방법
5. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0