메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제55권 제5호
발행연도
2018.1
수록면
1,463 - 1,481 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $\mathbf{X}=\{X_t\}_{t\geq 0}$ be a L\'{e}vy process in $\mathbb{R}^d$ and $\Omega$ be an open subset of $\mathbb{R}^d$ with finite Lebesgue measure. The quantity $H_{\Omega} (t) = \int_{\Omega}\mathbb{P}^{x} (X_t\in \Omega )\, \mathrm{d} x$ is called the heat content. In this article we consider its generalized version $H_g^\mu (t) = \int_{\mathbb{R}^d}\mathbb{E}^{x} g(X_t)\mu( \ud x )$, where $g$ is a bounded function and $\mu$ a finite Borel measure. We study its asymptotic behaviour at zero for various classes of L\'{e}vy processes.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0