메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
서울대학교 인지과학연구소 Journal of Cognitive Science Journal of Cognitive Science 제19권 제2호
발행연도
2018.1
수록면
195 - 228 (34page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Development of artificial cognition, one of the major challenges of contemporary science, requires better understanding of the nature and function of mind. This paper follows the idea of Searle that mind is more than computation, and explores the notion that mind has to be embodied in agency that actively interacts with the outside world. To avoid anthropocentrism and dualism, I develop the concept of agency using principles of biosemiotics, a new discipline that integrates semiotics (science on signification and meaning) with biology. In evolutionary terms, human cognition is an advanced form of agency that emerged from simpler ancestral forms in animals, plants, and single-cell organisms. Agency requires autonomy, informed choice, and goal-directedness. These features imply a capacity of agents to select and execute actions based on internal goals and perceived or stored signs. Agents are always constructed by parental agents, except for the most simple primordial molecular-scale self-reproducing agents, which emerged from non-living components. The origin of life coincides with the emergence of agency and primitive communication, where signs are not yet associated with objects, and instead used to activate or regulate actions directly. The capacity of agents to perceive and categorize objects appeared later in evolution and marks the emergence of minimal mind and advanced communication via object-associated signs. Combining computation with agential features such as goal-directedness, adaptability, and construction may yield artificial systems comparable in some respects to human mind.

목차

등록된 정보가 없습니다.

참고문헌 (90)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0