메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
경희대학교 경영연구원 의료경영학연구 의료경영학연구 제11권 제3호
발행연도
2017.1
수록면
17 - 26 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to forecast changes in the prevalence of chronic diseases and health expenditure and to test policy scenarios using the Future Elderly Model(FEM). The FEM is a Markov microsimulation model which predicts current trends and future shifts imply for policy by forecasting the future medical expenditure and health status of the elderly(Chen et al., 2014). Based on the FEM developed by Goldman et al.(2004), this study aims to explore ways to reduce spending growth associated with population aging. To achieve this goal, this study projects the size of Korean population and the prevalence of chronic diseases(hypertension, diabetes, cancer, other diseases) up to 2040 and tests smoking and obesity scenarios, using two waves(2012, 2013) of the Korea Health Panel(KHP) data and National Health Insurance Service(NHIS) database. The results of the simulated model are as follows. health expenditure decreases when policy intervention scenarios for obesity and smoking succeed. Health expenditure on chronic diseases(hypertension, diabetes, cancer) under the smoking and obesity intervention scenarios, respectively, decreases by 136,598 million won and 54,773 million won by 2020; 867,699 million won and 248,328 million won by 2030; and 1,493,707 million won and 318,299 million won by 2040. Although this study uses the coefficient estimates of transition probabilities only from two waves(2012, 2013) and focuses on three main chronic diseases(hypertension, diabetes, cancer) categorizing the rest diseases under “others,” it would serve as a meaningful foundation for future research as the first study adapting the FEM to Korea.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0