메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제16권 제1호
발행연도
2018.1
수록면
231 - 242 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
병원 재원일수의 효율적 관리는 병원의 수익과 환자의 진료비 절감을 위해 매우 중요한 요소이다. 이러한 재원일수의 효율적 관리를 위해서는 병원들이 재원일수에 대해서 벤치마킹을 할 수 있도록 지원이 필요하고 재원일수 절감의 구체적인 방향을 제시해 줄 수 있는 재원일수 예측모형의 개발이 필요하다. 본 연구에서는 2013년과 2014년도 퇴원손상환자 자료 중 급성뇌졸중 환자를 추출하여 분석용 자료를 만들고 인공지능을 이용하여 급성뇌졸중 환자의 재원일수 예측모형을 개발하였다. 분석용 자료는 훈련용 60%, 평가용 40%로 분류하였다. 모형개발은 전통적 통계기법인 다중회귀분석기법과 인공지능기법인 대화식 의사결정나무기법, 신경망 기법, 그리고 이들을 모두 통합한 앙상블기법을 이용하였다. 모형평가는 Root ASE(Absolute error) 지표를 이용하였는데, 다중회귀분석은 23.7, 대화식결정나무 23.7, 신경망 분석은 22.7, 앙상블은 22.7로 나타났고 이를 통하여 재원일수 예측모형 개발에 인공지능기법의 유용성이 입증되었다. 앞으로 재원일수 예측모형개발에 인공지능 기법을 보다 효율적으로 활용할 수 있는 방안에 대해서 계속적인 연구가 이루어 질 필요가 있다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0