메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제18권 제3호
발행연도
2012.1
수록면
186 - 190 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Coding Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) with complex and polysemy clinical terms may ask coder to have a high level of knowledge of clinical domains, but with simpler clinical terms, coding may require only simpler knowledge. However, there are few studies quantitatively showing the relation between domain knowledge and coding ability. So, we tried to show the relationship between those two areas. Methods: We extracted diagnosis and operation names from electronic medical records of a university hospital for 500 ophthalmology and 500 neurosurgery patients. The coding process involved one ophthalmologist, one neurosurgeon, and one medical record technician who had no experience of SNOMED coding, without limitation to accessing of data for coding. The coding results and domain knowledge were compared. Results: 705 and 576 diagnoses, and 500 and 629 operation names from ophthalmology and neurosurgery, were enrolled, respectively. The physicians showed higher performance in coding than in MRT for all domains; all specialist physicians showed the highest performance in domains of their own departments. All three coders showed statistically better coding rates in diagnosis than in operation names (p < 0.001). Conclusions: Performance of SNOMED coding with clinical terms is strongly related to the knowledge level of the domain and the complexity of the clinical terms. Physicians who generate clinical data can be the best potential candidates as excellent coders from the aspect of coding performance.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0