메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한경영정보학회 경영과 정보연구 경영과 정보연구 제36권 제4호
발행연도
2017.1
수록면
129 - 148 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기존 전시회 정보 제공 서비스는 전시회가 열리는 장소 주변의 관광지를 추천한다. 이러한 위치기반 추천의 경우 전시회의 내용과 관련이 없는 관광지를 추천할 수 있다는 한계점이 있다. 전시회 내용과 관련된 관광지를 관람객에게 추천함으로써 전시회에서 획득한 지식을 관광지에서 경험하는 데에 도움을 줄 필요가 있다. 전시회 큐레이터들이 전시회 내용과 관련된 관광지를 일일이 찾아 추천하는 방법이 있지만, 수작업이다 보니 큐레이터가 가지고 있는 배경지식의 범위 내에서만 추천이 가능하다는 한계점이 있다. 수작업에 따른 오류가 있을 수도 있기 때문에 자동화된 방법이 필요하다. 본 연구에서는 언어자원 빅데이터를 활용하여 전시회 내용과 관련된 관광지를 자동으로 추천하는 방법을 제안한다. 언어자원으로는 한국관광공사 LOD(Linked Open Data), 위키피디아, 국립국어원 사전 등을 활용했다. 단일 컴퓨터로는 이러한 대용량 언어자원을 효율적으로 처리하기 어렵기 때문에, 클라우드 컴퓨팅 프레임워크인 아파치 스파크(Apache Spark)에 기반하여 구현했다. 사용자가 웹브라우저를 통해 전시회 정보를 열람하면 본 알고리즘에 의해 추천된 관광지들을 같이 보여주는 웹인터페이스도 구현했다(http://bike.snu.ac.kr/WARP). 주요 전시회에 대한 관광지 추천 정확도에 대해 전문가 평가를 진행했다. 기존 방법에 비해 본 논문에서 제안한 방법의 정확도가 더 높았다. 본 연구를 활용하면 전시회 큐레이터의 수작업을 줄여줄 수 있고 전시회 관람자들을 관광지로 자연스럽게 유도할 수 있기 때문에, 전시산업과 관광산업 모두에게 도움이 될 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0