메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제32권 제4호
발행연도
2017.1
수록면
827 - 833 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we define a set including of all $f_{a}$ with $a\in R$ generalized derivations of $R\ $and is denoted by $f_{R}.$ It is proved that (i) the mapping $g:L\left( R\right) \rightarrow f_{R}$ given by $g\left( a\right) =f_{-a}$ for all $a\in R$ is a Lie epimorphism with kernel $N_{\sigma,\tau};$ (ii) if $R$ is a semiprime ring and $\sigma$ is an epimorphism of $R$, the mapping $h:f_{R}\rightarrow I\left( R\right) $ given by $h\left( f_{a}\right) =i_{\sigma\left( -a\right) }$ is a Lie epimorphism with kernel $l\left( f_{R}\right) ;$ (iii) if $f_{R}$ is a prime Lie ring and $A,B$ are Lie ideals of $R,$ then $\left[ f_{A},f_{B}\right] =\left( 0\right) $ implies that either $f_{A}=\left( 0\right) $ or $f_{B}=\left( 0\right)$.

목차

등록된 정보가 없습니다.

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0