메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제53권 제1호
발행연도
2016.1
수록면
21 - 28 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is known that no two of the roots of the polynomial equation \begin{equation}\begin{split} \prod_{l=1}^n (x-r_l) + \prod_{l=1}^n (x+r_l) =0, \label{one-1} \end{split}\end{equation} where $0 < r_1 \leq r_2 \leq \cdots \leq r_n$, can be equal and all of its roots lie on the imaginary axis. In this paper we show that for $0 < h< r_k$, the roots of $$ (x-r_k+h)\prod_{\substack{l=1\\ l\neq k}}^n(x-r_l) + (x+r_k-h)\prod_{\substack{l=1\\l\neq k} }^n (x+r_l) = 0 $$ and the roots of (\ref{one-1}) in the upper half-plane lie alternatively on the imaginary axis.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0