메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Diabetes is known to be one of common causes for several types of peripheral nerve damage. Diabetic neuropathy (DN) is a significant complication lowering the quality of life that can be frequently found in diabetes patients. In this study, the metabolomic characteristic of DN and Diabetes was investigated with NMR spectroscopy. The sera samples were collected from DN patients, Diabetes patients, and healthy volunteers. Based on the pair-wise comparison, three metabolites were found to be noticeable: glucose, obviously, was upregulated both in DN patients (DNP) and Diabetes. Citrate is also increased in both diseases. However, the dietary nutrient and biosynthesized metabolite from glucose, ascorbate, was elevated only in DNP, compared to healthy control. The multivariate model of OPLS-DA clearly showed the group separation between healthy control-DNP and healthy control-Diabetes. The most significant metabolites that contributed the group separation included glucose, citrate, ascorbate, and lactate. Lactate did not show the statistical significance of change in t-test while it tends to down-regulated both in DNP and Diabetes. We also conducted the ROC curve analysis to make a multivariate model for discrimination of healthy control and diseases with the identified three metabolites. As a result, the discrimination model between healthy control and DNP (or Diabetes) was successful while the model between DNP and Diabetes was not satisfactory for discrimination. In addition, multiple combinations of lactate and citrate in the OPLS-DA model of healthy control and diabetes group (DNP + Diabetes patients) gave good ROC value of 0.952, which imply these two metabolites could be used for diagnosis of Diabetes without glucose information.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0