메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제16권 제1호
발행연도
2014.1
수록면
115 - 124 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
의사결정나무는 의사결정규칙을 나무구조로 도표화하여 분류 및 예측을 수행하는 분석이다. 이분형 목표변수의 분류 및 예측을 위하여 이용되는 의사결정나무모형은 직관적이며, 나무구조에 의해 분석 과정의 설명이 용이하기 때문에 탐색적 지식발견에 널리 활용된다. 본 연구는 의사결정나무의 다양한 경쟁모형 중에서 분류 및 예측을 위한 최적모형을 탐지하는데 그 목적을 두고 있다. 본 연구에서 적용된 의사결정나무 분리 알고리즘(splitting algorithm)은 CHAID, Exhaustive CHAID, CART, QUEST이다. 최적 모형의 탐지는 두 단계에 걸쳐 시도된다. 첫 단계는 네 가지 분류 알고리즘 각각에 대하여 상위, 하위 마디의 최소 개체수와 나무깊이를 달리하면서 각각의 분류 알고리즘 내에서 오분류율을 최소로 하는 모형을 선발한다. 이때 안정적인 결과를 얻기 위하여 10-fold 교차타당성(cross validation) 실험을 적용하였다. 두 번째 단계는 네 가지 분류 알고리즘 각각에서 후보모형으로 선발된 모형을 다시 이익값(gain)과 향상도(lift) 통계량에 기반하여 비교함으로써 최종적으로 최적모형을 선발한다. 실증분석을 위하여 목표변수가 이분형인 DM 반응 자료가 이용되었다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0